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ABSTRACT 

In this paper, we propose a robust isotropic tetrahedral mesh generation method. An advancing front method is employed to 
control local mesh density and to easily preserve the original connectivity of boundary surfaces. Tetrahedra are created by each 
layer. Instead of preparing a background mesh for mesh spacing control, this information is estimated at the beginning of each 
layer at each node from the area of connecting triangles on the front and a user-specified stretching factor. An alternating digital 
tree (ADT) is prepared to correct the mesh spacing information and to perform geometric search efficiently. At the end of the 
mesh generation process, angle-based smoothing and Delaunay refinement are employed to enhance the resulting mesh quality. 
Surface meshes are prepared beforehand using a direct advancing front method for discrete surfaces extracted from computed 
tomography (CT) or magnetic resonance imaging (MRI) data. The algorithm is demonstrated with several biomedical models. 

Keywords: mesh generation, advancing front method, unstructured, isotropic tetrahedral mesh, biomedical, computed 
tomography, CT, magnetic resonance imaging, MRI 

1. INTRODUCTION 

Thanks to advances in numerical algorithms and computer 
hardware, unstructured mesh approaches have been used 
for a wide range of computational filed simulations (CFS) 
and the simulations can be performed with reasonable 
computational accuracy and cost. For the volume mesh 
generation, isotropic tetrahedral meshes are widely used for 
inviscid and low Reynolds number viscous flows, 
structural/fracture analyses etc. due to their simplicity in 
terms of mesh generation. Therefore, the ability to generate 
a tetrahedral mesh from a given surface mesh automatically 
is essential in CFS. 

Many papers have been published on the isotropic 
tetrahedral mesh generation. There are two major 
approaches: Delaunay triangulation methods [ 1 , 2 ] and 
advancing front methods [3-7]. The Delaunay triangulation 
is based on the empty sphere property. This mathematical 
criterion is a major backbone of the Delaunay approach. It 
enables high quality meshes and relatively fast runtime. 
The empty sphere property is, however, very sensitive to 
truncation errors in practical computations in 3D. More 
than five points are sometimes located on almost the same 

sphere. To resolve this problem, Shewchuk proposed an 
efficient algorithm for arbitrary precision floating-point 
arithmetic [ 8 ]. Integer coding for node coordinates is 
another approach. Although the conversion from real 
numbers to large integers slightly changes the node 
coordinates on the surface boundary, they are usually 
recovered at the end of the mesh generation process 
without any problem. However, a special treatment is still 
required for the nodes on the same spheres. 

Boundary recovery is another issue needed to be resolved 
in the Delaunay approach. The empty sphere property does 
not ensure that the surface boundary preserves the original 
connectivity. The constrained Delaunay approach [ 9 ] 
cannot be easily extended to 3D complex domains. There 
are sometimes needs to generate a set of volume meshes for 
multi-connected domains, for example, to represent a 
different material property in each domain, or to generate 
hybrid meshes for viscous flow simulations. For parallel 
mesh generation, it is common to decompose the entire 
domain into a number of sub-domains and to tetrahedralize 
each sub-domain simultaneously. In this case, the shared 
internal boundaries must be identical. Although they can be 
changed during the parallel mesh generation process, the 



parallel efficiency often deteriorates due to the required 
communication between the processors. 

The advancing front approach is based on the generation of 
tetrahedra by marching a front toward the interior. An 
initial front is usually defined as a water-tight surface mesh. 
Elements are created on the front, which is achieved by 
adding new points in the interior of the domain. This 
enables the generation of elements in variable size with 
desired stretching. Local mesh density near the initial front 
(i.e. boundaries) can be controlled easily. In addition, the 
topology of the initial front can be naturally preserved. The 
disadvantages of this approach are slow computational 
speed due to geometric search during the process and the 
quality of resulting meshes. Although these disadvantages 
must be resolved, there is no need to recover surface 
boundaries and the controllability is promising. 

Combination of the advantages of the Delaunay and the 
advancing front approaches are widely used [10-12]. This 
algorithm starts with a Delaunay triangulation of a set of 
boundary nodes. This is used as a background mesh. New 
nodes are then added by the advancing front approach. This 
combined approach can shorten the runtime and produce 
high quality meshes. Local node density can be controlled 
easily. However, it still inherits the drawback of the 
Delaunay approach. Although the initial Delaunay 
triangulation is not difficult in 2D, the surface recovery is 
often troublesome in 3D. 

Our approach is based on a simple advancing front method, 
and a Delaunay refinement method is employed at the end. 
The concept of the advancing front approach is clear from 
the analogy in 2D as well as the already published books 
[13] and papers. The problem is that they do not mention 
clearly about the detailed process in the tetrahedral mesh 
generation. One of the purposes of this paper is to discuss 
our approach to generate tetrahedral meshes using an 
advancing front method in detail. Nowadays, many 
commercial mesh generators support isotropic tetrahedral 
mesh generation. However, their reliability still needs to be 
discussed. Some of them force users to recreate the surface 
mesh again without providing adequate reason. Some do 
not support mesh generation for multi-connected domains. 

In this paper, we focus on developing a robust tetrahedral 
mesh generation method based on an advancing front 
method. At the end of the mesh generation, an angle-based 
smoothing method and a Delaunay refinement method are 
applied. For the surface mesh generation, we use a direct 
advancing front method based on discrete surfaces. The 
method is applied to several biological geometries 
extracted from computed tomography (CT) or magnetic 
resonance imaging (MRI) data to demonstrate the 
capability of the system. 

2. SURFACE MESH GENERATION 

A GUI-based surface mesh generator has been developed 
based on the direct advancing triangulation method [14-16]. 
In this approach, a quality surface mesh is generated on an 
under-lying discrete surface called a background mesh. The 
background mesh should be a water-tight triangulated 

surface. If not, automated and manual repairing routines 
can be applied. Geometrical features are extracted from the 
background mesh. By specifying node distribution on the 
features, the local mesh density can be easily controlled. 
The advancing front method is then directly applied in 3D 
so as to ensure the quality of each triangle. For the 
geometric search, an alternating digital tree (ADT) is 
prepared in order to efficiently find neighboring nodes [17]. 
After the triangulation, an angle-based smoothing method 
is applied to the resulting mesh to ensure quality. 

In this manner, the surface of interest is re-triangulated into 
a high-quality mesh to the desired degree. To use a mesh 
for numerical simulations, it should have isotropic elements 
and their sizes should be changed smoothly. Otherwise, the 
numerical error becomes significant and the simulations 
may fail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Tetrahedral mesh generation 
process: (a) part of initial front, defined as the 
1st level front; (b) generating tetrahedra using 
triangles on the 1st level front; (c) generating 
tetrahedra using nodes on the 1st level front; 
(d) and (e) applying the same strategy to the 
2nd level front 

3. TETRAHEDRAL MESH GENRERATION 

Figure 1 shows the outline of the tetrahedral mesh 
generation process. The same idea is discussed in Ref. 10. 
From the initial front defined by a surface mesh, tetrahedral 
elements are created inside the domain. To avoid 
complications in the front, tetrahedral elements are 
generated by each layer, which has a base front. Let us call 
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it n-th level front (n = 1, 2, …). When the n-th level front is 
completely constructed as shown in Figure 1a (initial front; 
1st), Figure 1c (2nd) or Figure 1e (3rd), mesh spacing 
information is updated. Nodes to be added in accordance 
with the generation of tetrahedra belong to the (n + 1)-th 
level front, and the mesh spacing information is not 
prepared at the nodes until the (n + 1)-th level front is 
completely formed. The tetrahedral mesh generation is 
finished if the front has no triangles. Note that the front is 
not always simple like a water-tight surface mesh, whose 
edges have only two neighboring faces. Every edge on the 
front is expected to have 2q (q = 1, 2, …) neighboring faces. 

During the mesh generation process, the quality of each 
tetrahedral element i is evaluated using the skewness εi. 
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where Vi is the volume of tetrahedron i and Viopt is the 
volume of an equilateral tetrahedron with the same 
circumradius. If εi is zero, the tetrahedron is equilateral. If 
it is one, it is degenerated. 

The quality of a triangle can be evaluated in the same way. 
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where ai is the area of triangle i and aiopt is the area of an 
equilateral triangle with the same circumcircle. 

3.1. Generating Tetrahedra 
In this approach, we do not prepare a background mesh for 
the tetrahedral mesh generation to simplify the process. An 
influence region will be considered at each node on the n-th 
level front. The user input is a water-tight triangular surface 
mesh and a stretching factor for tetrahedral elements. The 
mesh generation process is summarized in the following 
subsections. 

3.1.1. Required Data 
Before discussing the method, the following data are 
maintained during the process. 

• Node i: coordinate xi 
• Node i on the n-th level front: surface normal iN  (Eq. 

3); estimated height oih′  (Eq. 6); searching radius sir′  
(Eq. 7); number of remeshing 

• Node on the front: connected triangles on the front 
• Tetrahedron: 4 nodes 
• Triangle on the front: 3 nodes; unit normal vector 
• ADT: nodes on the front 

3.1.2. Initial Front Setup 
The mesh generation starts with inputting a water-tight 
surface mesh. The orientation of the faces must be the same 
(if not, see Ref. 16). The faces must face inside the domain; 

i.e., three nodes are stored in counter-clockwise order when 
each face is looked down upon from the inside as shown in 
Figure 2. The surface mesh is directly used as an initial 
front for the tetrahedral mesh generation. The initial front is 
also defined as the 1st level front. 

 

 

 

 

Figure 2. Face orientation 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Mesh spacing information based on 
surface normals and area 

3.1.3. n-th Level Front Setup 
At each node xi on the front, the following one vector and 
two values are prepared. They are illustrated in Figure 3. 
First, estimate a unit surface normal vector simply 
averaging the normals of the connected faces. 
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where mk and kN  denote the number of connecting 
triangles on the front and the unit normal of triangle k, 
respectively. 

Second, define a searching radius rsi as the maximum 
length of the connected edges. 

Third, calculate the reference height hoi. 
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where ak denotes the area of a neighboring triangle k. α is a 
user-specified stretching factor (the default value is 1.15). 
Suppose that the averaged area ia  is for an equilateral 
triangle. The constant 1.24 comes from the analogy for an 
equilateral tetrahedron ( ( )4 3322 ). 

hoi is corrected considering an influence region at each 
node on the front based on the value rsi as shown in Figure 
3. The influence region is defined as a sphere (xj, 3rsj) at 
node j. If node i is in the j’s sphere, if rsj < rsi, if 

( ) o60cos-1 >⋅ ji NN , and if node i is visible from node j, the 
coefficients ci and cj are updated as follows: 
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The initial value for ci is zero. In Figure 3, the visible 
region is the slashed zone and the black points represent the 
affected nodes. To find nodes in the specified sphere, 
geometric search is required. An efficient geometric search 
algorithm is essential for an advancing front method to 
shorten the runtime. For this purpose, an ADT is prepared, 
which registers all the nodes on the front. 

 
Figure 4. Tetrahedral mesh generation from a 
low-quality surface mesh: (a) and (b) surface 
mesh; (c) and (d) volume mesh showing a 
cross-section 

Finally, the corrected reference height at node i is obtained 
after the influence from all the nodes on the front is 
considered. 

 ( ) oiioi hch +=′ 0.1  (6) 

This value should be smoothed using a Laplacian method 
considering the values at the neighboring nodes on the front 
in order to create tetrahedra locally having almost the same 
height. Note that the smoothing is also important not to 
create too small or too big elements and to prevent the 
mesh generation from failing. For example, Figure 4 shows 
a tetrahedral mesh from a low-quality surface mesh, which 
has slivers and large-sized jumps, just for demonstration 
purposes. Owing to the height smoothing, triangles 
appearing on the cross-section are locally uniform. The 
searching radius is also corrected as follows: 

 ( ) siisi rcr  1.0  ,0.1max +=′  (7) 

3.1.4. Tetrahedral Mesh Generation Using 
Triangles on n-th Level Front 

The beginning of this stage is illustrated in Figure 1a (1st) 
and Figure 1c (2nd) and the end is in Figure 1b and Figure 
1d. The reason to select a base from the triangles on the n-
th front is so that the height of each tetrahedron to be 
created can be controlled easily. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Selected base and candidates 

1. Select triangle k that has the smallest area as a base 
for the tetrahedron to be created. Its apex should be 
selected from the already existing nodes or a newly 
created node as shown in Figure 5. All of them are 
stored in a candidate list, and the best node will be 
selected. Let Aki (i = 1, 2, 3) be the three nodes of face 
k. Let ak be its area. Face k has three neighboring 
triangles that share edges. Let Bki (i = 1, 2, 3) be the 
node of the neighbor that is opposite to Aki. 

All three nodes of face k are located on the n-th level 
front. The following averaged reference height is 
prepared based on Eq. 6. 
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Index i denotes its three nodes. The searching radius 
at face k is defined as follows: 

 ( )kssssk hrrrr   ,  ,  ,max1.1 321 ′′′×=  (9) 

2. Determine new node position xpk. It can be calculated 
over the selected base as follows: 

 kkokpk gh Nxx +=  (10) 

where xok, kN  and g denote a reference point 
position on face k, the unit normal vector of face k, 
and a coefficient (initially 1.0), respectively. hk is 
from Eq. 8. 

Some references suggest that the center of the face 
xMk be xok as shown in Figure 6a. If the triangle is 
almost equilateral, this is true. However, an 
advancing front method does not ensure that resulting 
tetrahedra and their faces are in good quality. 
Moreover, users may input a low-quality surface 
mesh. The reference point position should be changed 
considering the skewness of the triangle. If ηk > 0.5, 
the center of the longest edge is used as the reference 
point, instead of the center of the face, as show in 
Figure 6b. 

In our approach, the candidate list has only one new 
node at first. If the new node is not a good candidate, 
try g = 0.7i (i = 1, 2, 3) in Eq. 10 later. Note that a 
polyhedron is not always tetrahedralized in 3D 
without adding a new node. Although an appropriate 
node can be added in this case, the new tetrahedron 
tends to be a sliver. It is better not to add such a new 
node. This issue is discussed later in Section 3.2. 
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Figure 6. New node position xpk: (a) based on 
the center; (b) based on the center of the 
longest edge 

3. Select other possible candidates from the neighboring 
nodes on the front using the ADT. They must be in a 
certain sphere (xck, rck) and be located over the face. 
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where xMk is the center of the face. w will be 
increased if an appropriate node cannot be found after 
Step 4. 

The candidates are sorted in ascending order by the 
value ζkl. The new point determined in Step 2 is listed 
at the end. 

 ( ) lcklkl xx −+= 1.0εζ  (12) 

where index l and εl denote each candidate and the 
skewness of the tetrahedron defined by face k and 
candidate l, respectively. Now, we have m candidates 
and each of them is represented by Pl (l = 1, 2, … , 
m). Pm is a new point defined by Eq. 10. 

4. Select a candidate Pl from the top of the list and 
perform intersection checks. For this purpose, 
neighboring nodes Qν in the sphere (xck, rsk) (see Eqs. 
9 and 11) except Aki (i = 1, 2, 3) and Pl should be 
prepared (ν = 1, 2, … , µ). Let Tl be the tetrahedron 
defined by face k and Pl. 

• Volume test: the volume of Tl should be greater 
than 0.01hk ak. 

• Length test: if the skewness of the face ηk > 0.6, 
the distance between xMk and Pl should be less than 

( ) 0.2  ,  ,  ,max 321 kkckkckkck hBBB xxx . Otherwise, 
it should be less than 2.0hk. 

• Point in tetrahedron test: nodes Qν should not be 
located in Tl. 

• Over the manifold test: if edge AkiPl (i = 1, 2, 3) 
has not been created, Pl must be located over the 
manifold at Aki. 

• Edge-face intersection test (1):  if edge AkiPl (i = 1, 
2, 3) has not been created, they should not intersect 
with existing faces on the front connected to nodes 
Qν. If face AkiAkjPl (i = 1, 2, 3 and j = 3, 1, 2) has 
not been created, it also should not intersect with 
existing edges on the front connected to nodes Qν. 
Note that the radius of the searching sphere rsk is 
always greater than the local maximum edge length 
by definition. We just need to consider the 
neighbors of Qν for the edge-face intersection test. 

• Edge-face intersection test (2): If edge AkiPl (i = 1, 
2, 3) has not been created, it should not intersect 
with existing faces on the front connected to the 
two nodes Akj (j = 1, 2, 3 and j ≠ i).  

• Face-face (dihedral) angle test: If face AkiAkjPl (i 
= 1, 2, 3 and j = 3, 1, 2) has not been created and if 
Pl and Bk(6-i-j) are not the identical, check the 
dihedral angle between face AkiAkjPl and AkjAkiBk(6-i-

j). The angle should be greater than 5°. 

• Edge-face angle test: If edge AkiPl (i = 1, 2, 3) has 
not been created, the angle between it and the 
manifold of the front at Aki should be greater than 
5°. If face AkiAkjPl (i = 1, 2, 3 and j = 3, 1, 2) has 
not been created, the angle between the face and the 

Nk 
Nk 



edges on the front connected to Aki and Akj should 
be greater than 5°. 

If all the tests are passed, proceed to the next step. If 
not, try the next candidate. If all the candidates in the 
list are examined, go back to Step 3 and increase w. if 
w = 10, perform remeshing around the selected 
triangle discussed later in Section 3.2. 

5. Add a new tetrahedron, and a new node and faces if 
required, and update the front information and the 
ADT. If there is no triangle on the n-th front, go to 
the next section. If not, go back to Step 1. 

3.1.5. Tetrahedral Mesh Generation Using 
Nodes on n-th Level Front 

The beginning of this stage is illustrated in Figure 1b (1st) 
and Figure 1d (2nd) and the end is in Figure 1c and Figure 
1e. The process is almost the same as that discussed in 
Section 3.1.4. The way to select the next base is different. 
All the three nodes of a face are not always on the n-th 
level front. In Step 1, Eqs. 8 and 9 should be estimated only 
using the nodes on the n-th level front. At least one node 
belongs to the n-th level front. If nodes on the n-th level 
front have no faces, proceed to the next level front. If the 
front has no triangles, the mesh generation process is 
completed. 

3.2. Local Remeshing 
During the mesh generation process, nodes sometimes 
cannot be added without creating extremely low-quality 
elements. In this case, it is better to remove the tetrahedra 
near the selected base and to remesh the resulting larger 
void in order to create higher quality elements. There are 
two reasons. First is that a node placed too close to a face is 
sensitive to truncation errors. In our approach, double 
precision floating-point numbers are used for real numbers 
without any special arithmetic algorithms to enable a cross-
platform application easily, and hence this situation should 
be avoided. Second is that low-quality elements often come 
with low-quality faces, which produce low-quality 
elements again later. The mesh generation process may fail 
in the end. 

A node on the n-th level front stores the number of 
remeshing process that affected it. If the remeshing is 
locally the first time, remove the tetrahedra on the n-th 
level front connected Aki (i = 1, 2, 3). In case of more than 
two times, the removed region becomes large accordingly. 
If no tetrahedra on the n-th level front are found around the 
nodes, the remeshing should consider all the local 
tetrahedra. In connection with removing the tetrahedra, the 
front and the ADT should be updated. 

3.3. Smoothing 
Compared to the Delaunay approach, an advancing front 
method tends to generate low-quality elements. During the 
stage of the node insertion discussed in Section 3.1, more 
restrictions can be added not to create slivers. The problem 

is that they are sometimes computationally very expensive. 
Thus, we refine the resulting meshes at the end of the 
process combining three methods: a) node removal; b) 
angle-based node smoothing to optimize node locations; 
and c) Delaunay refinement to optimize connectivity of 
nodes. The three methods are applied in this order. The 
angle-based node smoothing and the Delaunay refinement 
are applied three times consecutively. 

3.3.1. Node Removal 
During the tetrahedral mesh generation process, some 
nodes may be assigned too small number of elements as 
shown in Figure 7. A node looks like in a tetrahedron if its 
neighbors are four (Figure 7a) or in a pyramid if its 
neighbors are six (Figure 7b). Since the neighbors of such 
nodes are often low-quality tetrahedra, the nodes are 
removed without any conditions. 
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Figure 7. Needless nodes having (a) four 
neighbors; and (b) six neighbors 

3.3.2. Angle-Based Node Smoothing 
An angle-based smoothing method improves mesh quality 
by shifting node positions [18, 19]. Laplacian smoothing is 
often employed for enhancing mesh quality because it 
requires a low computational cost. However, it does not 
guarantee to improve mesh quality and often creates lower 
quality or invalid elements. The size and shape quality of 
the mesh after the angle-based smoothing method is much 
better than that after the Laplacian smoothing. 

 

 

 

 

Figure 8. Overhead view of cap and sliver 

3.3.3. Delaunay Refinement 
Delaunay refinement has a strong mathematical 
background, and it improves the quality of meshes 
significantly. Considering our approach, most of the low-
quality elements are caps and slivers as shown in Figure 8. 
Hence we applied a Delaunay refinement method as 
follows: 



1. Select a tetrahedron whose skewness εi is greater than 
0.3. 

2. List its four nodes in descending order of sizes of the 
faces opposite to them, which correspond to the 
likelihood of dissatisfaction with the Delaunay empty 
sphere property. 

3. Select a node A from the top. Consider a tetrahedron 
T1 connected to the node and one of its faces F 
opposite to the node. If the circumsphere of the other 
tetrahedron T2 that shares the face contains the node 
A, Delaunay refinement can be applied here. The 
following three swapping types are considered [20]: 

• Edge suppress 
• 2-3 (3-2) swap 
• 2-2 swap 

If a set of new tetrahedra after one of the swapping 
methods have better quality in terms of the skewness 
(i.e., the largest skewness of the new 
tetrahedralization is smaller than that of the previous 
tetrahedralization), the new tetrahedralization will be 
accepted. First, the edge suppress is utilized to create 
the edge AB, where B is the node of the tetrahedron 
T2 opposite to the face F. If the edge cannot be 
created or the new tetrahedralization is not accepted, 
the face F is swapped. 

4. Step 3 is continued until no face swapping is occurred 
around the node. 

Note that this approach does not follow the empty sphere 
property strictly in order to retain the original connectivity 
on the surface mesh and to avoid truncation errors. The 
quality of tetrahedral meshes is, however, improved 
significantly. An example will be shown in Section 4.2. 

4. APPLICATIONS 

Background meshes for the surface triangulation are 
extracted from CT/MRI data to represent high-fidelity 
models. The tetrahedral mesh generation method has been 
applied to brain/skull models and a pelvic bone. 

4.1. Simplified Brain/Skull Model 
Computational simulations for traumatic brain injury (TBI) 
are required to understand how it occurs and, for example, 
to develop safer cars. A set of meshes for the simplified 
brain/skull model is shown in Figure 9. Major components 
of a head are skin, bone (skull and spine), brain (white and 
gray matters) and cerebrospinal fluid (CSF). The modeling 
of CSF is especially important because CSF acts to cushion 
a blow to the head and lessen the impact. In this case, 
meshes are generated for the brain (28,932 nodes and 
149,268 tetrahedra), the region between the brain and skull 
(Brain-Inner; 29,838 nodes and 127,062 tetrahedra), and 
the skull (Inner-Outer; 20,301 nodes and 71,992 tetrahedra). 

An advancing front method easily preserves the 
connectivity of boundary surfaces. Although three 

tetrahedral meshes are generated for the three different 
domains, the corresponding surface boundaries are the 
identical. Figure 10 shows skewness of the tetrahedra for 
the three meshes. Although the outermost two layers have 
thin volumes, the quality of the elements is acceptable. 

 

Figure 9. Set of tetrahedral meshes for 
brain/skull model (half): (a) brain model based 
on MRI data; (b) gap between skull and brain 
(the cross section indicated by green) and 
skull model (by purple) 

 

Figure 10. Skewness of the tetrahedra in the 
simplified brain/skull model 
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Figure 11. Tetrahedral mesh for detailed brain 
model: (a) surface mesh; (b) cross section (α 
= 1.05); (c) cross section (α = 1.15) 

 
(a) 
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(c) 

Figure 12. Skewness of the elements in the 
detailed brain model: (a) surface mesh; (b) 
tetrahedral meshes before and after the 
smoothing (α = 1.15); (c) tetrahedral meshes 
(α = 1.05 and 1.15) 

4.2. Detailed Brain Model 
Figure 11 shows two tetrahedral meshes for a detailed brain 
model based on MRI data. The surface mesh contains 
84,510 boundary triangles. The volume meshes have 
340,492 nodes and 1,896,578 tetrahedra when the 
stretching factor α = 1.05; 185,958 nodes and 982,004 
tetrahedra when α = 1.15. Figure 12 shows skewness of the 
elements based on Eqs. 1 and 2 (triangles in the surface 
mesh and tetrahedra in the volume meshes). In this case, 
the number of elements needs to be as small as possible in 
spite of the detailed model. Consequently, the surface mesh 
has several low-quality elements. The smoothing methods 
discussed in Section 3.3 improve the quality of the 
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tetrahedral mesh significantly as shown in Figure 12b. The 
elements whose skewness is more than 0.8 are 0.010% 
when α = 1.05 and 0.018% when α = 1.15. Even if the 
stretching factor becomes large, the number of elements is 
reduced greatly and the mesh quality is still excellent as 
shown in Figure 12c. 

The tetrahedral mesh generation method is robust even if 
the input surface mesh is complicated and has some low-
quality elements. Cross-sections at the same location are 
rendered in Figure 11b and Figure 11c. Smooth size 
variation can be seen. The quality of the mesh is enough to 
use numerical simulations. 

 
(a) 

 
(b) 

Figure 13. Surface mesh generation for a 
human pelvis bone: (a) original; (b) after 
refinement considering thickness of the 
volume 

4.3. Human Pelvis Bone 
To investigate the injury mechanism of human bones, mesh 
generation for them from CT/MRI data is required to 
perform realistic simulations. Figure 13 shows surface 
meshes for a human pelvis bone. The quality of the original 
surface mesh shown in Figure 13a is excellent if a volume 

mesh is created outside. In actual numerical simulations, 
reducing the number of elements is sometimes important, 
while the quality of the volume mesh is also important. To 
create a better volume mesh, the surface mesh is refined 
considering local thickness of the volume beforehand as 
shown in Figure 13b. The surface mesh has 22,045 nodes 
and 44,186 faces. The volume mesh shown in Figure 14 has 
58,115 nodes and 360,212 tetrahedra. Figure 15 shows 
skewness of the elements. 

 
Figure 14. Tetrahedral mesh generation for a 
human pelvis bone (a cross-section indicated 
by purple) 



 
(a) 

 
(b) 

Figure 15. Skewness of the elements (pelvis 
bone): (a) surface mesh; (b) tetrahedral mesh 

5. CONCLUSIONS 

A robust isotropic tetrahedral mesh generation method is 
presented. An advancing front method is employed for the 
tetrahedrization. Instead of preparing a background mesh 

for mesh spacing control, tetrahedra are created by each 
layer and mesh spacing information is estimated at the 
beginning of the layer from the area of triangles on the 
front and a user-specified stretching factor. An alternating 
digital tree (ADT) is prepared to correct the spacing 
information, and to perform geometric search efficiently. 
The remeshing routine is implemented during the process 
so as to not create extremely low-quality elements. At the 
end of the mesh generation process, an angle-based 
smoothing method and a Delaunay refinement method are 
employed to enhance the quality of resulting meshes. The 
advancing front method proposed here is robust even if the 
input surface mesh contains low-quality triangles. The 
tetrahedral mesh generation method is applied to several 
biological geometries based on CT/MRI data. The nature of 
the advancing front method enables no connectivity 
changes for the input surface meshes and the controllability 
for local mesh density. The smoothing methods based on 
the angle-based smoothing and Delaunay refinement ensure 
the quality of resulting meshes. The quality of resulting 
meshes is excellent and suitable for numerical simulations. 
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